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Abstract, continued

“bounds for single mode Stress Intensity Factors are obtained. The obtained

inequalities are in agreement with known numerical solutions of finite cracked
bodies.
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1. Introduction

The present work is concerned with new bounding theorems in fracture
mechanics. The theorems are established by the use of the variational
Principles of the Theory of Elasticity. The theorems show the influence of
the finite size of the cracked body on the change in elastic energy due to
the crack as a function of the prescribed boundary conditionms. For special
loadings, when single modes occur, it is shown that the stress intensity
factors (abbreviated SIF) of a finite cracked body with prescribed stresses
on the external boundary will always be larger than the crack tip SIF of an
infinite cracked body with the same boundary conditions and that the SIF of
a finite cracked body with prescribed displacements on the external boundary
will be always smaller than the SIF of an infinite cracked body with the

same boundary conditions.

2. The Bounding Procedure

The problem of bounding the change in elastic energy due to a crack in
a finite body will here be considered in terms of the classical extremum
principles of minimum potential and complementary energies. These principles
have been previously used for bounding the effective elastic moduli of

heterogeneous materials [l] and recently for bounding effective moduli of
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Einite Bodv with Prescribed Stresses,

The change in energy due to a crack in a finite body with prescribed
stresses on the external boundary will be bounded by use of the principle
of minimum potential energy. Consider the finite body of volume v,I con=-
taining a stress free crack (fig. 1t1a). Traction boundary conditions are

prescribed on the external boundary 81.

. -}

ri(s1) = '1‘i (1N
The potential energy of the cracked body is

-1 a
%172 J 9431 €131 & j Ty vyy &8 (2)
v, 5,

where oij’ eiJ and ui are the unknown stresses, strains and displacements

in the body. The potential energy stored in the cracked body is given by,

o (-]
UP1 = UP1 - 601 (3)
where 031 is the potential energy of the body of volume V1 subject to (1)

in the absence of the crack, and is a function of 02J1' eij1 the stresses

and strains in the uncracked body,

--1 o .o 4
%1 " -2 fv 9341 €131 W
1

i combs o .
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] and OU is the change in potential energy due to the crack and according to

a well lknown result, Eshelby [3], can be expressed as

1 o
U —2- GiJ f [ui]anS (5)

l on the
crack

.where [ui} is the displacement jump accross the crack faces. From (5) it
is seen that only the displacement in the immediate vicinity of the crack

has to be known to compute &U,

The potential energy functional is defined by:

UPl - .%- Iv 515 éij dv - [s rz ai ds (6) ]
1 1

where uy is an admissible displacement field which must merely be continu-
ous in the region excluding the crack. Since in the present problem boun-

dary tractions are prescribed U, is not restricted by boundary conditions,

i

The "stresses" and "strains”, 514 and Ei are defined by

J

(a)

(1) !

cij scijkl ekl (b)

The extremum principle states that
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g

g1 2 Upy (8)
Thus the problem of bounding 501 reduces to that of constructing an appro-
priate admissible displacement field. To do this consider another larger

finite body of volume V including V; and containing the same crack, where

V=V1+V2>V1 (9)
4
§ i : and apply the tractions Ti to the external boundarv S,

T,(8,) = T2 (10)

it 2 i

The displacement solution to this problem is u The part of this dis-

i2°
placement field contained in the region V1 of the larger body is an admis-

sible displacement field for the body of volume V., subjected to (1), since

1
it is continuous within the volume V1, excluding the crack.

u, = uiz(in Vl) (11) }

i

The displacement field u12 can be expressed as the sum of the displacement
i a®
j 12
presence of the orack,

in the body V without the crack and the perturbation uiz due to the

g, 2 ul o+l (12)

12 i2 i2
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The strains and stresses associated with ui2 are
e =2 e, + ¢! (a)
ije ij2 ije
(13)
c 200+ ag! (b)
ij2 ije ij2
Thus
si,j s eiJZ(in V1) (a)
(1)
Gij = O’ijz(in V1) (b)
The potential energy of the larger body is defined as
.. =3 Tun € av - @ u,, ds (15)
P2 2 V.4V 12 “1ij2 S i 12
1l 2 2
and can be expressed as
l
B = e o o -
Uy = =3 f 9492 €142 4V - 60, (16)

V1+V2

In order to bound the real potential energy of the finite body of volume V

1

the expression Up is defined by

T =i o .o -
Tp=-3 Jv T442 €142 9V - 9T, an
1

o
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Comparing (16) and (17) it is easy to see that UP takes the form
T o=u, += 0% €% . dv (18)
pTUP2 T2 ), 132 F132

2

By substituting (11) and (14) into (6) the potential energy functional for

Vl1 takes the form:

~

- -1 a
- Upy =3 [v O442 €442 9V - Js T, ug, ds (19)
1 1

It will now be shown that

i ] (20)

g >u (21)

Assuming (20) to be correct it can be written in the form

1 1

1
(22)

4 - a
I 'I.‘i ;9 ds
Sl

or after rearranging

R A Y [ A v e

a o o 1
7 fv 12512 @ fs Ty gy &5 %3 Iv 9132 €132 V2 3 fv O132813297"
12 2 2
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1 o o a a
2 f (0442%1529142513 29 f Ty Y2 ds*'f Ty up 820
\) S S (23)
2 2 1
3
1
It will now be assumed that Tia has the special form
!
a o
[ Ti 2 cij n:l (24)

both on S1 and on S This is known as homogeneous traction boundary con-

20
ditions and the elasticity stress solutions in this case are

(o]

cij? (25)

=% _=24°
0332 ® 94y

for homogeneous elastic bodies of arbitrary shape. The associate strain

and displacements are

o __.o _ o _g o
€131 T€i32 F €13 T "ij0 9iy

(26)
o
44 (x) = u; 5 (x) = ui(x) = ey xJ
It now follows from virtual work that
| - a - o
i! Isz r? u, ,d8 + fsl 17 u, 88 = - L’z oYy E1g2 W (27)

A ik,

Introducing (27) together with (13) and (25) into (22) we obtain
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- 1 o ' 1. ° 1. '
fv C =305 €132 ¥ 7 %92 S13 ¥ 7 %42 Big2) V20 (28)
2
By the symmetry of the Cijkl with respect to ijkl interchange
9 )
ciJ EijZ = aijz Eij (29)
and (28) reduces to
Lo, et avzo (30)
v 2 132 “ij2
since

Evidently (30) is correct as the integrand is positive definite

it is an elastic strain energy density. This proves the inequality (20),

therefore also the inequality (21). Expressing ﬁP by (17) and Uy, by (3)
and (4) and using (25), (21) becomes:
-3 0, €% av - su. -3 o 2 av- &u (31)
2 1§ i) 2 2)q 13 4 1
1
and therefore
(32)

su, 26U,

In words: ghen ihe same homogeneous stress boundary gconditions are
lrescribed on Lhe exterpal Doundary of itwo finite bodies, the energy change
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due %o Lhe preseucs of a grack will be larger in the smaller dodv,

A limiting case of the problem considered is when the larger body of
volume V becomes infinite. It follows that the change in energy due to a
erack in a finite body subjected to stress boundary conditions is always
larger than the energy change is an infinite body subjected to the same

boundary conditions. Thus Eq. (32) can be extended to read
U, 2 68U, 2 su” (33)

The change in elastic energy due to a crack in a finite body with
prescribed displacements on its external boundary will be bounded by use of
the principle of minimum complementary energy. The procedure is very simi-
lar to that followed above, but instead of an admissible displacement field

an admissible stress field has to be constructed.

Let us prescribe homogeneous displacements on the external boundaries

S1 and 82, of the two finite cracked bodies of volumes V1 and V=V1+V2 il-

lustrated in fig.t.

a o
ui(S1) =z siJ xJ (a)
(34)
u:(sz) - szj xy (b)

T

ey o I o

ks =

Sy

=y~

T

T etk
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’ 4
’ The stress, strain and displacement fields in ¢the ¢two bodies are '
o] c §
131° 131, ul and 132 siJZ' uiz‘respectively‘in the presence of the ?
o (] Q o . 0
crack and 6131, iJ1' ui1 and ciJZ' eijz' ui2 in the absence of the E
crack. The complementary energies of the two bodies are 3
!
1 - 284 a-1f o o0
‘ oy = 2 fv °1115131 dv fsru u, ds > f ijl 141 dv + 6U (35)
1 1
i i1 a 1 o
U2 = 2 [v oy C1f12 & fs Tipuy 8 =-3 J °ijz ij2 v + 6u,  (36)
172 2
where
Ti = cij nj (37)
i As in the previous case the energy changes &U are given by (5).

The stress solution to the larger body, of volume V, over the part H
of this volume is an admissible stress field for the problem of the body
V1, since it satisfies equilibrium everywhere in V1 and has no displacement

| boundary conditions to satisfy, thus

v a =g
i 13 © %132

(in Vl) (38)




The potential energy functional for the body V1 is defined as

-~

-l 5 = - a
ﬂCl > f cij sij dav f Ti uy das
Y $;

where

T. = G,.n

i ij

and eij is related to cij by (7b).

The principle of minimum complementary energy states that

Ugq 2 Uy
Define ﬁc as
1 o o

UC = - -z-fv oijZ sijZ dv + GUZ
1

From (36) it follows that Uccan be expressed as

T = l 0 [o] - l . - a
U=V *2 I 125192 &V = 2 I %142%152 47 [ Tgg vy &+
Vz VI+V2 82

1l o _o
2 f; 93428142 9
2

+

(39)

(40)

(41)

(42)

(43)

et

i
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For boundary conditions (34), (25-26) are true for elastic homogeneous
bodies of arbitrary shape. Expressing the admissible stresses and the re-
lated strains by (13) and using the principle of virtual work for the vo-

lume V2 it can be shown, as in the previous case that
UC 20, (44)

It then follows that

UC 2 UC1 (45)
From (35) and (43) substituted into (U45) we obtain
GUZ 2 cSU1 (46)

In words: JWhen Lhe same homogeneous displacement boundary gonditions are
prescribed on Lthe sexternal boundaries of itwo finite bodies, the epergy
change due to the presence of a crack will he smaller in the smaller bodv,

Again, a limiting case is obtained when V becomes infinite: the
change in elastic energy due to a crack contained in a finite elastic body
with prescribed displacements on its external boundary is always smaller
than the change in elastic energy dus to the same crack in an infinite body
with the same prescribed displacements at infinity. Eq. (U46) extends to

read:
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w”zw21w1 (47)

3. Bounding of SIF

! In the preceding general bounds on the changes in elastic en-
‘ ergies due to the presence of a crack in a finite body were obtained.

These bounds can be transformed into bounds on SIF for special loadings.

i { The change in energy due to a Griffith crack imbedded in an isotropic
body as given by (5) can be expressed as a function of the crack tip SIF.

For a 3-dimensional body

a
su = 2T f (K3(a) + K2 (a) + (1-vIKZ (a)] da (48)

E

(o]
When the cracked body is 2- dimensional, only Modes I and II exist and

a
suas 2 f (k3(a) » K2 (a)] da (49)
[+
where a is half the crack length.

When the cracked body becomes infinite the stress intensity factors are

KI = cgz a"z (a) ;
1 |

Kyp 2 09, @ 2 (b) (50) |
l

Rrrr = 923 at/? (e) : J

S e ML Gb s b e .8 TR 2 g S et e o o A ALY T
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where 022, 0?2, 023 are the tensile and shear stresses applied at infin-

ity, when stress boundary conditions are prescribed, or

! o 172
K; = E €22 (a)
, - o _1/2
Kyy=6€,a (b) (51)
o 1/2
KIII 2 G €3 3 (e)
when displacements of the kind uio- si Jx 3 are applied on the external boun-
b dary.
For the general case of mixed mode loading, only the combination

2 2
1 * (VK

bounded. For special single mode loadings bounds on single SIF can be ob-

[Ki + K ] of the stress intensity factors can be

tained. A few examples will be conﬁidered in the following.
Exagple 1:
a) Stress bdoundary conditions.
Consider a finite plane rectangle of dimentions 2b and 2c containing a

erack of length 2a., (fig.2). with prescribed boundary conditions on the

external edges of the form:
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N Ay 8

[o]
022(x2 z+¢)=0

% 9,y (X, 22b) 20 (52)
v 012(x1==b)=c12(x2=;e)=0
¥
‘% . |
Since the loading is symmetric this is a mode I loading, and the only SIF
existent is KI. The change in elastic energy due to the crack is
a
o= & f K2(a) da (53)
o]
The change in elastic energy due to a crack in an infinite body with
the same boundary conditions is
a a
»_2m 2, o .21 w2
su z f g,a da =& f K" (a) da (54)
(-] o
i Substituting (53) and (54) into the inequality (33) we obtain
a a
IK%(a) dagfx";z (a) da (55)

This inequality will hold for any crack length only when the same inequali-
) ty holds for the integrands, therefore

, 2 w2
i K 2K, (56)

: wwmmudfr&ﬂk‘m!\':muw‘. :

i
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or

KI 2 c°a1/2 (57)

b. Risplacement boundary conditions

Consider again the rectangle of Fig 2. with prescribed displacement

boundary conditions on the external edges of the rectangle of the form:

u, (xzzj-_c) =2V,
u, (x2 =+£6) =0 (58)
1.12(x1=g!:)=u1 (x1=1b)=0

This deformation is symmetric so only the mode I SIF will enter the

energy change expression. We can express the prescribed displacement vo as

The stress intensity factor for an infinite body with prescribed displace-

ments at infinity according to (51a), is

‘ K, = Ee® al/? (59)




Page 19

When the changes in elastic energy for the finite and infinite rectangle
are expressed as a function of the mode I SIF and inequality (47) is used

the following bound on KI(a) is obtained:

!. Kp(a) <K () (60)
3
or
4
Ev
~ g g 2 a2 (61)

Isida (7] calculated, numerically, the mode I SIF for a finite rectan-

gle with various boundary conditions. For boundary conditions (51) his re-

sults satisfy (57), i.e. the SIF are always larger than the one for an in-

finite cracked body.

A second problem considered by Isida was that of the finite rectangle

with the following boundary conditions

uz(x2=3°)=*’vo (a) .
u, (x2 z$¢)z20 (b) (62)
%1 (x,sgb)so'w (x,:gb)ao (e)
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It should be pointed out that the results for this case cannot be

bounded by the theorems developed in the present work. Since the boundary

i g 2 2 WP

conditions are mixed [ (62¢) are traction boundary conditions]. However
Ev
l these results also satisfy (61), i.e. KI is always smaller than To_ al/z.

( It should be emphasized that there are no similar inequalities for the

SIF of a finite body with mixed boundary conditions. It may be either

Lxiot rass

larger or smaller than the SIF for the corresponding infinite body. Isida

(4] also considered the case of the rectangle with the following loading

u, (xzagc) =2V,

(x, =+ b) = 0'12()!2 =+e) =0 (63)

992 %

., (x

1 0

£ b)

1 =

1 For this case the results obtained where sometimes larger than KI and

sometimes smaller, depending on the ratios a/b and c¢/b.

b s
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A second example considered will be that of a finite rectangle of di-

9 mentions b and 2h containing a crack of length a, (fig.3).
1

The corresponding infinite body for this problem will be that of a

#
4
- e W

Mot AP e




half plane containing a crack. The mode I SIF for the infinite body is

KT = 1.12 @ al/? (64)

when a stress a° perpendicular to the crack is prescribed at infinity and

K = 1128 ¢° al’/? (65)

when a displacement field

u? = ¢° (66)

is prescribed at infinity.

Various solutions to the problem of the finite rectangle with boundary

conditions

“
Q

Oa (xz 2 ¢ h)

[
Q

0’12 (x1 =z 0,b) = (x2 2+ h) =20 (67)

011 (81 = O,b) - 4 0

have been summarized in [8] and the KI(a) obtained are always larger than

172

1.120°% a as predicted by eq. (56).
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Al 30 the mode III loading with prescribed stresses for a finite bar

with an edge crack was solved numerically, [5], and the results are also as

- -]

expected: the obtained K III °

111 (a) are larger than K

4. Copnclusions

By using the variational principles of the theory of elasticity it has
been shown that the change in energy due to a crack in a finite body incre-
ases as the dimensions of the body decrease and is always larger than the
change in energy due to a crack in an infinite body, when stress boundary
conditions are prescribed. When displacement boundary conditions are pres-
cribed the inverse is true. As the dimensions of the body decrease, the
change in elastic energy also decreases and the change in energy due to a

crack in an infinite body is always larger than in a finite one.

The changes in elasti¢ energy can be expressed as a function of the
erack tip SIF and for special loadings the SIF can be shown to be always
larger (for prescribed stresses) or Smaller (for prescribed displacements)

than the SIF of a crack in an infinite body.

The changes in elastic energy can be related to the crack criticality
criterion. The decrease in the size of a finite body will precipitate fai-
lure when stresses are applied and postpone it when displacements are ap-

plied. When alternating stresses are applied to a finite fatigue specimen
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and a crack is growing during the fatigue process, the crack tip SIF incre-

ases with the dimensions of the crack and =0 does the crack criticality.

Existing solutions to c¢rack problems in finite bodies have been shown

to be in agreement with the theorems developed in the present work.

5 A et
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f£igure Captions

Fig. 1: Finite cracked bodies of arbitrary size

t Fig. 2: Finite rectangle with central crack

Fig. 3: Finite rectangle with edge crack

S U psdol grioe







